Serial transfer can aid the evolution of autocatalytic sets
نویسندگان
چکیده
BACKGROUND The concept of an autocatalytic set of molecules has been posited theoretically and demonstrated empirically with catalytic RNA molecules. For this concept to have significance in a realistic origins-of-life scenario, it will be important to demonstrate the evolvability of such sets. Here, we employ a Gillespie algorithm to improve and expand on previous simulations of an empirical system of self-assembling RNA fragments that has the ability to spontaneously form autocatalytic networks. We specifically examine the role of serial transfer as a plausible means to allow time-dependent changes in set composition, and compare the results to equilibrium, or "batch" scenarios. RESULTS We show that the simulation model produces results that are in close agreement with the original experimental observations in terms of generating varying autocatalytic (sub)sets over time. Furthermore, the model results indicate that in a "batch" scenario the equilibrium distribution is largely determined by competition for resources and stochastic fluctuations. However, with serial transfer the system is prevented from reaching such an equilibrium state, and the dynamics are mostly determined by differences in reaction rates. This is a consistent pattern that can be repeated, or made stronger or weaker by varying the reaction rates or the duration of the transfer steps. Increasing the number of molecules in the simulation actually strengthens the potential for selection. CONCLUSIONS These simulations provide a more realistic emulation of wet lab conditions using self-assembling catalytic RNAs that form interaction networks. In doing so, they highlight the potential evolutionary advantage to a prebiotic scenario that involves cyclic dehydration/rehydration events. We posit that such cyclicity is a plausible means to promote evolution in primordial autocatalytic sets, which could later lead to the establishment of individual-based biology.
منابع مشابه
The Origin of Life, Evolution, and Functional Organization
The idea that autocatalytic sets played an important role in the origin of life is not new. Neither is the idea that autocatalytic sets can tell us something about the evolution and functional organization of living systems. However, most of these ideas have, until recently, remained at a conceptual level, and very few concrete, mathematically sound, and practically applicable results had been ...
متن کاملAutocatalytic Sets Extended: Dynamics, Inhibition, and a Generalization
Background: Autocatalytic sets are often considered a necessary (but not sufficient) condition for the origin and early evolution of life. Although the idea of autocatalytic sets was already conceived of many years ago, only recently have they gained more interest, following advances in creating them experimentally in the laboratory. In our own work, we have studied autocatalytic sets extensive...
متن کاملAutocatalytic sets in a partitioned biochemical network
BACKGROUND In previous work, RAF theory has been developed as a tool for making theoretical progress on the origin of life question, providing insight into the structure and occurrence of self-sustaining and collectively autocatalytic sets within catalytic polymer networks. We present here an extension in which there are two "independent" polymer sets, where catalysis occurs within and between ...
متن کاملExploration of the Significance of Autocatalytic Chemical Reaction and Cattaneo-Christov Heat Flux on the Dynamics of a Micropolar Fluid
During the homogeneous-heterogeneous autocatalytic chemical reaction in the dynamics of micropolar fluid, relaxation of heat transfer is inevitable; hence Cattaneo-Christov heat flux model is investigated in this report. In this study, radiative heat flux through an optically thick medium is treated as nonlinear due to the fact that thermal radiation at low heat energy is distinctly different f...
متن کاملThe structure of autocatalytic sets: evolvability, enablement, and emergence.
This paper presents new results from a detailed study of the structure of autocatalytic sets. We show how autocatalytic sets can be decomposed into smaller autocatalytic subsets, and how these subsets can be identified and classified. We then argue how this has important consequences for the evolvability, enablement, and emergence of autocatalytic sets. We end with some speculation on how all t...
متن کامل